
f

\ Techniques Development Laboratory
Duter Program NWS TDL CP 89-2

f

STRING SEARCH

Silver Spring, Md.
March 1989

U.S. DEPARTMENT OF
COMMERCE

National Oceanic and
Atmospheric Administration

National Weather
Service

f

PREFACE

The Techniques Development Laboratory's (TDL's) computer program (CP)
series is a subset of TDL's technical memorandum series. The CP series
documents computer programs written at TDL primarily for the Automation of
Field Operations and Services (AFOS) computers.

The format for the series follows that given in the AFOS Handbook 5,
Reference Handbook, Volume 6: Applications Programs, Part 1: Policy and
Procedures, published by the Office of Technical Services/AFOS Operations
Division.

NOAA Techniques Development Laboratory
Computer Program NWS TDL

CP 83-1 Cross Sectional Analysis of Wind Speed and Richardson Number.
Gilhousen, Kemper, and Vercelli, May 1983. (PB83 205062)

CP 83-2 Simulation of Spilled Oil Behavior in Bays and Coastal Waters. Hess,
October 1983. (PB84 122597)

CP 83-3 AFOS-Era Forecast Verification. Heffernan, Newton, and Miller,
October 1983. (PB84 129303)

CP 83-4 AFOS Monitoring of Terminal Forecasts. Vercelli, December 1983.
CP 83-5 Generalized Exponential Markov (GEM) Updating Procedure for AFOS.

Herrmann, December 1983.
CP 84-1 AFOS Display of MDR Data on Local Map Background. Newton, July 1984.
CP 84-2 AFOS Surface Observation Decoding. Perrotti, September 1984.
CP 84-3 AFOS-Era Forecast Verification. Miller, Heffernan, and Ruth,

September 1984.
CP 85-1 AFOS Monitoring of Terminal Forecasts. Vercelli and Norman, May 1985.
CP 85-2 AFOS Terminal Forecast Decoding. Vercelli, Norman, and Heffernan,

October 1985.
CP 85-3 AFOS-Era Forecast Verification. Ruth, Miller, and Heffernan,

October 1985.
CP-87-1 AFOS Terminal Aerodrome Forecast Formatting. Wantz and Eggers,

July 1987.
CP-87-2 AFOS-Era Forecast Verification. Ruth and Alex, July 1987.
CP-87-3 Forecast Review. Wolf, July 1987.
CP-87-4 AFOS Monitoring of MDR Data Using Flash Flood Guidance. Norman and

Newton, October 1987.
CP-87-5 AFOS Terminal Forecast Quality Control. Vercelli and Leaphart,

December 1987.
CP-88-1 AFOS Terminal Forecast Decoding. Vercelli and Leaphart,

August 1988.
CP-89-1 Structure Flow Diagram Generator. Adams, March 1989.

NOAA Techniques Development Laboratory
Computer Program NWS TDL CP 89-2

Qc

TU
.no. -a

STRING SEARCH

Susan M. Adams

Techniques Development Laboratory
Silver Spring, Md.
March 1989

f

UNITED STATES

DEPARTMENT OF COMMERCE

RoDertA Mosoacner

Secretary

National Oceanic and

Atmospheric Administration

William E Evans. Under Secretary

ttationai Weatner Service

Elbert W Friday Jr

Assistant Administrator

f

TDL CP 89-2
March 1989

TABLE OF CONTENTS

Page

1. Introduction 1

2. Methodology and Software Structure 1

3. Procedures and Use of Switches 1

4. Cautions and Restrictions 2
5. References 3

6. Program Information and Procedures for Installation and
Execution

A. Program Information and Installation Procedure 4

B. Program Execution and Error Conditions 6

7. Figures 8

i

TDL CP 89-2
March 1989

STRING SEARCH

Susan M. Adams

1. INTRODUCTION

Developing and maintaining application programs used by the Automation of
Field Operations and Services (AFOS) system on the Data General S/230 Eclipse
minicomputer are sometimes long and troublesome tasks* These programs consist
of many FORTRAN and Assembly Language files which are separately compiled or
assembled creating, respectively, relocatable binary (.RB) files. Executable
program save files (.SV) are created by the Real-Time Disk Operating System
(RDOS) using the Relocatable Loader (RLDR) utility. RLDR builds certain
required tables, modules, directories, and the required Task Scheduler into the
executable program file (Data General, 1979). It also links the relocatable
binary files specified in the RLDR command (NWS, 1987), usually referred to as
the "load line", into the executable save file. Because the programs are made
up of separate files, global searches for a particular data object, CALL
statement, SUBROUTINE, or common block, for example, become a tedious chore.
Previously, these types of searches were done manually. The String Search
software performs a global search, a search on the main program and all its
non-library functions and subroutines, for a specified text string. This
support software is designed to be a useful tool in maintaining, enhancing, and
developing programs.

2. METHODOLOGY AND SOFTWARE STRUCTURE

The String Search software consists of a single program; FINDER. FINDER is
designed to locate a word or group of words within a program and its
subordinate routines. It displays the names of routines within which the
string is found on the terminal from which the program is initiated. It writes
to a file the name, line number, and line of source code containing the
specified text string. FINDER accesses the program load line and the FORTRAN
or Assembly Language files of its functions and/or subroutines. It creates a
"Search” file for the program with a .SE extension on the program name. Fig. 1
illustrates the data flow for the String Search software. The overall program
structure of FINDER is shown in Fig. 2.

3. PROCEDURES AND USE OF SWITCHES

FINDER should be installed in an applications directory with links from the
directory where the source code and load line for the program to be searched
reside. Several switches are available to pass information to the String
Search software at runtime and to vary the output from the software. Switches
are needed to pass to the software the program name and search string, along
with the option of printing the names of all the routines called (not only
those containing the desired string).

FINDER is initiated from the terminal by entering:

FINDER/A progname/N "text string"/S

TDL CP 89-2
March 1989

The two required local switches, /N and /S, pass the name of the program to be
searched and the search string, respectively, to FINDER. The program to be
searched must have a load line (.LD) file in the directory being accessed. The
search string may be one or more words, enclosed in double quotation marks.
Single quotation marks may not be used. For example, the command:

FINDER GMOD/N "IWINDOW"/S

will search the main program, GMOD.FR, and all functions and subroutines
contained in the load line, GMOD.LD, for the string "IWINDOW". When the string
is located, the name of the file in which the string appears will be written to
the terminal. The filename, line number, and line of source code containing
the string will be written to the output file GMOD.SE (see Fig. 3). The option
al global switch /A allows the user to specify that all routines are to be
written to the output file, not just those containing the string (see Fig. 4).

4. CAUTIONS AND RESTRICTIONS

Due to the limited amount of main memory available on the Data General S/230
computers, several limitations have been set. Programs that exceed these
limitations should not be used with FINDER. These limitations are:

1. The program load line may not exceed 50 lines in length. If this
happens, the error message "FATAL ERROR - LOAD LINE TOO LONG"
will be printed at the terminal.

2. The program load line may contain no more than 300 subroutines.
If this limit is exceeded, the error message "FATAL ERROR - TOO
MANY SUBROUTINES IN LOAD LINE" will be printed at the terminal.

3. Filenames may contain no more than 12 characters, excluding the
extension. Files with names exceeding 12 characters in length will
be ignored by the program and will not be searched.

The text string entered on the command line may contain one or more words,
but it must be enclosed in double quotation marks (") if it has more than one
word or if it contains any special characters. If a string containing more
than one word is entered without the double quotes, FINDER will recognize only
the last word. This will still locate the desired string, but it may also
locate occurrences of the last word without the rest of the string. For
example, the command

FINDER GMOD/N CALL INITAR/S

will find all occurrences of "INITAR". This does include all occurrences of
the entire string, but may also include other lines (see Fig. 5).

When entering the specified text string on the command line, it cannot be
enclosed in single quotation marks. If this happens, the desired string will
not be located. The single quotation marks are considered to be part of the
text string; therefore, the command

FINDER GMOD/N 'COMMON'/S

2

TDL CP 89-2
March 1989

would cause a search for all occurrences of "'COMMON'", including the single
quotes. If the command

FINDER GMOD/N 'CALL INITAR'/S

were entered at the terminal, the program would search for the text string
"INITAR'".

If a text string includes a special character, such as a slash (/), the
string must be enclosed in double quotes, even if it has only one word. The
command

FINDER GMOD/N "COMMON/WIN"/S

would find all occurrences of the string "COMMON/WIN". However, if the string,
had not been enclosed in double quotes, the program would interpret the command

FINDER GMOD/N COMMON/WIN/S

as

FINDER GMOD/N COMMON/W IN/S

FINDER does not recognize the local /W switch, which is, therefore, ignored.
The remaining portion of the string immediately preceeding the /S switch, is
taken to be the text string. FINDER would search for all occurrences of the
string "IN" in the program GMOD.

The String Search software is designed to be a useful tool in maintaining and
updating other software. The running time varies slightly depending on the
number of subroutines to be searched, the length of the subroutines, and the
number of lines found containing the search string. The higher these numbers,
the longer the program takes to run.

5. REFERENCES

Data General Corporation, 1979: Real Time Disk Operating System (RDOS)
Reference Manual, Data General Corporation, Westboro, MA, 204 pp.

National Weather Service, 1987: National Weather Service AFOS Handbook,
No. 5, Vol. 6, Pt. 2, National Weather Service, NOAA, U.S.
Department of Commerce, (in preparation).

3

TDL CP 89-2
March 1989

6. PROGRAM INFORMATION AND PROCEDURES FOR INSTALLATION AND EXECUTION

STRING SEARCH

PART A: PROGRAM INFORMATION and INSTALLATION PROCEDURES

PROGRAM NAME: FINDER AAL ID; MSC013
Revision No.: 01.00

FUNCTION: This program searches the main program and its subroutines for a
text string. The program name and text string are specified on
the command line. When the string is located, the program or
subroutine name is printed to the terminal, and the name, line
number and line of source code are printed to an output file. An
optional switch may be used to also print the names of subroutines
not containing the text string. FORTRAN and Assembly Language
source files to be searched are determined from the program load
line. Functions found in the progam load line are searched;
library routines are not searched.

PROGRAM INFORMATION:

Development Programmer: Maintenance Programmer:

Susan M. Adams Harry Lebowitz

Location: Techniques Development Location: Techniques Development
Laboratory Laboratory

Phone: FTS 427-7639 Phone: FTS 427-8065

Language: FORTRAN IV/Revision 5.57 Type: Standard program
Macro Assembler/Revision 6.30

Save file creation dates: FINDER.SV
Original release/Revision 01.00 - December 1988

Running Time: Approximately 2-3 seconds per 100 lines of source code.
Running time varies with number and length of
subroutines.

Disk space: Program files - 25 RDOS blocks

PROGRAM REQUIREMENTS

Program files:

NAME

FINDER.SV

4

TDL CP 89-2
March 1989

Data files:

NAME LOCATION READ/WRITE COMMENTS

<progname>.FR
<progname>.LD
<subrtn>.FR
<subrtn>.SR
<progname>.SE

User's Directory
User's Directory
User's Directory
User's Directory
User's Directory

R
R
R
R
U Created by FINDER

LOAD LINE:
RLDR FINDER FINDREV CONVRT INITAR ISRCH RDARY OCHN TROUBL WMOV

BG.LB UTIL.LB FORT.LB SYS.LB AFOSE.LB

PROGRAM INSTALLATION
1. Move FINDER.SV to the applications directory. A link should be made

from the directory with the required source code and load line to
the applications directory.

5

TDL CP 89-2
March 1989

STRING SEARCH

PART B: PROGRAM EXECUTION and ERROR CONDITIONS

PROGRAM NAME: FINDER AAL ID: MSC013
Revision No.: 01.00

PROGRAM EXECUTION:

1. From the terminal, enter:

FINDER/A progname/N "string'VS

Definition of required switches:

.xxx/N - Main program name to be used. FINDER reads the load
line file for the program, <progname>.LD, to
determine files to be searched.

xxx/S - Text string to search for. The string should be
enclosed in double quotes. This allows for spaces and
special' characters within the string. Single quotation
marks should not be used.

Definition of optional switch:

/A - Print all program/subroutine names including those not
containing the specified text string.

2. Before execution, be sure that your program does not exceed the
following limitations:

a. The load line for the program may be no longer than 50 lines
in length.

b. The load line for the program may contain no more than 300
subroutines.

c. Filenames may contain no more than 12 characters, not
including the extension. Subroutines with names exceeding
12 characters will be ignored.

3. During execution, the names of the source files containing the
specified string are written to the terminal. The procedure name,
line number, and line of source code containing the string are
written to a file, <progname>.SE. If the /A switch is used, all
procedure names are printed to the terminal and file, not just those
containing the specified string.

4. Upon completion, the output file, <progname>.SE can be viewed either
displaying it on the terminal (enter TYPE <progname>.SE), or by
printing a hard copy (enter PRINT <progname>.SE).

6

TDL CP 89-2
March 1989

ERROR CONDITIONS

TERMINAL MESSAGES MEANING

1. "INCORRECT SWITCH SPECIFIED/ Either /N or /S switch was not
SWITCH NOT FOUND" found on the command line.

Re-enter the command.

2. "FATAL ERROR - Load line contains more than
LOAD LINE TOO LONG" 50 lines.

3. "FATAL ERROR - Number of subroutines in load
TOO MANY SUBROUTINES IN LOADLINE" line exceeds limitation of 300

subroutines.

4. "OPENING ...” Cannot open program load line
file specified with /N switch.
Restore the file or link, and
rerun program.

5. "CREATING ..." Cannot create output file
<progname>.SE. Clear the file
and rerun.

7

TDL CP 89-2
March 1989

Figure 1. Data flow for String Search software

8

TDL CP 89-2
March 1989

MAIN PROGRAM SUBROUTINES

FINDER
. INITAR

OCHN
. . TROUBL
. RDARY
. . IN I TAR
. . ISRCH
. . WMOV
. TROUBL
. WMOV
. ISRCH
. CONVRT

LOAD LINE

RLDR FINDER FINDREV CONVRT
FORT.LB SYS.LB AFOSE.LB

INITAR ISRCH RDARY OCHN TROUBL WMOV BG.LB UTIL.LB

Figure 2. Software structure and load line for program FINDER.

9

TDL CP 89-2
March 1989

COMMAND: FINDER GMOD/N "IWINDOW/S

OUTPUT IN GMOD.SE

GMOD.FR

0123 C IWIND0WO = AREA THROUGH WHICH REFERENCES TO EXTENDED MEMO
0151 COMMON/WIN/IWINDOW(1024)
0175 CALL MAPDF(NUM,IWINDOW,1,IER)
0202 CALL WRCLSUCP1,IWINDOW,IGCHN,ICON,ICHNL.IOVLl,IOPT,IER)
0207 CALL WRCLS(ICP2,IWINDOW,IGCHN,ICON,ICHNL,IOVL1,IOPT,IER)

FMINT.FR

0048 C ICP = CURRENT POSITION IN IWINDOW
0080 COMMON/WIN/IWINDOW(1024)
0116 CALL MKTIMECIWINDOW,ICP,IXLN,IYLN,IDX,IDY,MPRJ,IRC)
0120 IWINDOW(ICP)=IOR(K1200,IXDMC)
0121 IWINDOW(JJ)=IYDMC
0122 IF(IZ.EQ.1.0R.IZ.EQ.ITHREE)CALL ISET(IWINDOW(ICP),12)
0123 IF(IZ.GT.l) CALL ISET(IWIND0W(JJ),12)
0125 CALL CONDAT(IWINDOW,IDATE,ICP,IRC)
0129 IWINDOW(ICP)*IOR(K1200,K)
0130 IWINDOW(JJ)=ILY(1)—16 ;MIDDLE OF CHARACTER IN Y DIRECTI
0131 IWINDOW(ICP+ITWO)=>' <<0> ' ;PUT '<’ IN LEFT BYTE
0134 IWINDOW(ICP+ITHREE) = IOR(K1200,K)
0135 IWINDOW(ICP+IFOUR)=IWINDOW(JJ) ;MIDDLE OF CHARACTER IN Y DIRECT
0136 IWINDOW(ICP+5)='><0>' ;PUT ’>' IN LEFT BYTE
0144 IWINDOW(ICP+ITWO)=ITWO
0147 IWINDOW(ICP)=KVAL
0151 IWINDOW(ICP+1)=KVAL
0157 IWINDOW(ICP+ITHREE)=KVAL
0162 IWINDOW(ICP+IFOUR)=KVAL
0166 X TYPE'IWINDOW()=',(IWINDOW(MN),MN=1,ICP)
0173 IWINDOW(ICP)=*I0R(K1200 , IXPR+IDX/ ITWO)
0174 IWINDOW(ICP+1)=IYPR
0176 CALL WMOV(IPRH(NPTR),MPRJ,IWINDOW(IC))
0180 IWINDOW(ICP)=IOR(K1200,IXPCM)
0181 IWINDOW(ICP+1)=IOR(K6000,IYPCM)
0183 CALL WMOV(MAP(IP),LPCM,IWINDOW(IC))
0188 IWINDOW(ICP)=IOR(K1200,IXF)
'0189 IWINDOW(ICP+1) = IYF
0191 CALL WMOV(MAP(IP,ITWO,IWINDOW(IC))
0196 IWINDOW(ICP)=IOR(K1200,IXDIG)
0197 IWINDOW(ICP+1)=IYDIG
0199 CALL WMOV(MAP(IP),LDIG,IWINDOW(IC))

Figure 3. Sample output of FINDER without local /A switch.

10

TDL CP 89-2
March 1989

COMMAND: FINDER/A GMOD/N "IWINDOW"/S

OUTPUT IN GMOD.SE

CONVRT.SR

CTASK.FR

GDCLR.FR

intcls.fr

INITAR.SR

INTZOPT.FR

RDCUR.SR

TROUBL.FR

WMOV.SR

GMOD.FR

0123 C
0151
0175
0202
0207

IWINDOWO = AREA THROUGH WHICH REFERENCES TO EXTENDED ME
COMMON/WIN/IWINDOW(1024)
CALL MAPDF(NUM,IWINDOW,1,IER)
CALL WRCLS(ICP1,IWINDOW,IGCHN,ICON,ICHNL,IOVL1,IOPT,IER)
CALL WRCLS(ICP2,IWINDOW,IGCHN,ICON,ICHNL,IOVL1,IOPT,IER)

GGDM.FR

CONDAT.FR

FBRDR.FR

Figure 4. Sample output from FINDER using local /A switch.

11

TDL CP 89-2
March 1989

COMMAND: FINDER GMOD/N CALL INITAR/S

OUTPUT IN GMOD.SE

INITAR.SR
0001 .TITL INITAR
0002 .ENT INITAR
0009 ; SUBROUTINE INITARCIBUF,NW,VAL)
0027 INITAR: JSR @.CPYL ;

MKTIME.FR
0042 CALL INITAR(IASCII(ICP),MPRJ,' 1’)

MODIFY.FR

0156 CALL INITARCIRV,MAXCOL*MAXROW,IOFF)

PCHR.FR
0071 C INTRC.WRCLS.WMOV,INITAR
0186 CALL INITAR(NSEL(NPTR),N,”<11> ")

CONVAL.FR
0047 C GTDIG.DISPER.MOVCIR,SGN,INITAR
0056 CALL INITARCIDGB.NDIG.O)

GTDIG.FR

0049 C DGBOX,WRCLS,INITAR
0057 CALL INITARCIHOLD,3,IZERO)

SWXCL.FR

0036 C TROUBL,INITAR,WMOV
0049 CALL INITARCIDATA(NSTRT),NUM,0)

ASCICLD.FR

Figure 5. Sample output of FINDER using more than one word for the text
string, not enclosed in quotation marks.

12

	Structure Bookmark
	QC851.U6T32no.89-2
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. METHODOLOGY AND SOFTWARE STRUCTURE
	3. PROCEDURES AND USE OF SWITCHES
	4. CAUTIONS AND RESTRICTIONS
	5. REFERENCES
	6. PROGRAM INFORMATION AND PROCEDURES FOR INSTALLATION AND EXECUTION
	PART A: PROGRAM INFORMATION and INSTALLATION PROCEDURES
	PART B: PROGRAM EXECUTION and ERROR CONDITIONS

	7. FIGURES

